python - Cross validation of time series in Statsmodels -


i looked in examples on stats models don't see many examples of applying cross-validation time series.

let's have

`in [1]: __future__ import print_function  in [2]: import numpy np  in [3]: import statsmodels.api sm import pandas pd statsmodels.tsa.arima_process import arma_generate_sample np.random.seed(12345)  in [4]: import pandas pd  in [5]: statsmodels.tsa.arima_process import arma_generate_sample  in [6]: np.random.seed(12345)  in [7]: arparams = np.array([.75, -.25])  in [8]: maparams = np.array([.65, .35])  in [9]:  in [9]: arparams = np.r_[1, -arparams]  in [10]: maparam = np.r_[1, maparams]  in [11]: nobs = 250  in [12]: y = arma_generate_sample(arparams, maparams, nobs)  in [13]: dates = sm.tsa.datetools.dates_from_range('1980m1', length=nobs)  in [14]: y = pd.timeseries(y, index=dates) /users/pcoyle/anaconda3/bin/ipython:1: futurewarning: timeseries deprecated. please use series   #!/bin/bash /users/pcoyle/anaconda3/bin/python.app  in [15]: arma_mod = sm.tsa.arma(y, order=(2,2))  in [16]: arma_res = arma_mod.fit(trend='nc', disp=-1)  in [17]: print(arma_res.summary())                               arma model results ============================================================================== dep. variable:                      y   no. observations:                  250 model:                     arma(2, 2)   log likelihood                -245.887 method:                       css-mle   s.d. of innovations              0.645 date:                mon, 01 aug 2016   aic                            501.773 time:                        17:51:51   bic                            519.381 sample:                    01-31-1980   hqic                           508.860                          - 10-31-2000 ==============================================================================                  coef    std err          z      p>|z|      [95.0% conf. int.] ------------------------------------------------------------------------------ ar.l1.y        0.8411      0.403      2.089      0.038         0.052     1.630 ar.l2.y       -0.2693      0.247     -1.092      0.276        -0.753     0.214 ma.l1.y        0.5352      0.412      1.299      0.195        -0.273     1.343 ma.l2.y        0.0157      0.306      0.051      0.959        -0.585     0.616                                     roots =============================================================================                  real           imaginary           modulus         frequency ----------------------------------------------------------------------------- ar.1            1.5618           -1.1289j            1.9271           -0.0996 ar.2            1.5618           +1.1289j            1.9271            0.0996 ma.1           -1.9835           +0.0000j            1.9835            0.5000 ma.2          -32.1794           +0.0000j           32.1794            0.5000 -----------------------------------------------------------------------------` 

how move example doing cross-validation. ideally cross validation time dependence. suggestions?


Comments