the data frame has many continuous numeric columns (e.g. gr
) , sample identifier - wellseq
. there many rows of data each wellseq
. in data frame - there 94 distinct levels of wellseq
in 10227 rows. header lines data frame are:
gr wellseq 1 27.7049 1 2 31.1149 1 3 34.5249 1 4 39.7249 1 5 44.9249 1 6 50.1299 1
summary of column gr
below:
summary(gr) gr min. :-6.94 1st qu.:10.71 median :13.76 mean :18.99 3rd qu.:20.70 max. :98.42 na's :55
basic histogram of entire data gr
suitably created. further analysis, required identify each wellseq
contributing in histogram. ggplot()
script used is:
p2 <- ggplot() + theme_bw() + geom_histogram(data=gr, na.rm= true, mapping = aes(x=gr, fill=factor(gr$wellseq)), bins = 10) + scale_color_brewer(palette = "dark2") + scale_x_continuous(limits = c(-10, 100)) + labs(title=paste("gamma ray","histogram", sep=" ")) + theme(legend.position = "none")
resulting output has color - "sequential" , not "qualitative" palette "dark2". tried using answer in "how generate number of distinctive colors in r?" @ stackoverflow.com , created required colors.
dcolor = grdevices::colors()[grep('gr(a|e)y', grdevices::colors(), invert = t)] dcolorr <- sample(dcolor, 433, replace = f)
using scale_colour_manual(values = dcolorr)
gives same histogram. using ..count..
y
histogram show boundaries different wellseq
not fill needed.
p3 <- ggplot() + theme_bw() + geom_histogram(data=gr, na.rm= true, mapping = aes(x=gr, y= ..count.., col = factor(gr$wellseq), bins = 10)) + scale_colour_manual(values = dcolorr) + scale_x_continuous(limits = c(-10, 100)) + labs(title=paste("gamma ray"," frequency histogram", sep=" ")) + theme(legend.position = "none") fill = 1 # leads blue colored staked histogram
if set aes(x=gr, fill=wellseq)
should looking grouping of subsets of gr defined membership in wellseq.
look here.previous simple version of grouped histogram r histogram multiple populations
Comments
Post a Comment